Belief Propagation for Structured Decision Making
نویسندگان
چکیده
Variational inference algorithms such as belief propagation have had tremendous impact on our ability to learn and use graphical models, and give many insights for developing or understanding exact and approximate inference. However, variational approaches have not been widely adoped for decision making in graphical models, often formulated through influence diagrams and including both centralized and decentralized (or multi-agent) decisions. In this work, we present a general variational framework for solving structured cooperative decisionmaking problems, use it to propose several belief propagation-like algorithms, and analyze them both theoretically and empirically.
منابع مشابه
Loopy Belief Propagation: Bayesian Networks for Multi-Criteria Decision Making (MCDM)
Loopy Belief propagation is an increasingly popular method of performing approximate inference on arbitrary graphical models. Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data mining. Influence diagrams provide a compact technique to...
متن کاملBeliefs in Markov Trees - From Local Computations to Local Valuation
This paper is devoted to expressiveness of hypergraphs for which uncertainty propagation by local computations via Shenoy/Shafer method applies. It is demonstrated that for this propagation method for a given joint belief distribution no valuation of hyperedges of a hypergraph may provide with simpler hypergraph structure than valuation of hyperedges by conditional distributions. This has vital...
متن کاملRanking Network-Structured Decision-Making Units and Its Application in Bank Branches
Data envelopment analysis (DEA) is a method used for measuring the efficiency of decision-making units. Unlike the standard models, which assume decision-making units to be a black box, network data envelopment analysis focuses on the internal structure of these units. Some researchers have developed a two-stage method where all the inputs are entirely used in the first stage, producin...
متن کاملStructured Message Passing
In this paper, we present structured message passing (SMP), a unifying framework for approximate inference algorithms that take advantage of structured representations such as algebraic decision diagrams and sparse hash tables. These representations can yield significant time and space savings over the conventional tabular representation when the message has several identical values (context-sp...
متن کاملMathematical Programs for Belief Propagation and Consensus
This paper develops methods of distributed Bayesian hypothesis tests for fault detection and diagnosis that are based on belief propagation and optimization in graphical models. The main challenges in developing distributed statistical estimation algorithms are i) difficulties in ensuring convergence and consensus for solutions of distributed inference problems, ii) increasing computational cos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012